Skip to main content
🔍

Processed Signatures

This page hosts our in-house single-cell RNA sequencing (scRNA-seq) signatures for various cancer types. Below, you will find details about the processed signatures.

The repository for these datasets can be found here:

📌 Statescope Data GitHub Repository.

Available Cancer Signatures

Tumor TypeNumber of Cell Types AvailableCell TypesSource
🫁 NSCLC15['Alveolar_cell', 'Monocyte', 'CD4_T_cell', 'B_cell', 'Plasma_cell', 'Fibroblast', 'Macrophage', 'NK_cell', 'CD8_T_cell', 'Neutrophil', 'Dendritic_cell', 'Endothelial_cell', 'Tumor_cell', 'Mast_cell', 'Regulatory_T_cell']Placeholder Source
🎗️ PDAC7,8['T_NK', 'Endothelial', 'B_Plasma', 'Mast', 'Epithelial', 'Myeloid', 'CAFs'], ['Basal', 'CAFs', 'Myeloid', 'Mast', 'Classical', 'T_NK', 'Endothelial', 'B_Plasma']Placeholder Source
🩸 PBMC17, 7['T_cells_Treg', 'T_cells_CD8+_effector_memory', 'T_cells_CD4-CD8-', 'B_cells_memory', 'B_cells', 'Monocytes_non-classical', 'Dendritic_cells', 'Monocytes_classical', 'T_cells_CD4+_naive', 'T_cells_CD4+_effector', 'T_cells_CD4+_effector_memory', 'NK_cells', 'Early_NK_cells', 'T_cells_CD8+_naive', 'T_cells_CD8+_effector', 'ILC', 'T_cells_CD4+_central_memory'], ['T_cells_CD4+', 'Dendritic_cells', 'T_cells_CD8+', 'T_cells_CD4-CD8-', 'B_cells', 'NK_cells', 'Monocytes']Placeholder Source

Using Statescope with Processed Signatures

The Statescope package allows you to integrate pre-processed single-cell signatures into your deconvolution workflows.

📌 Statescope GitHub Repository

Example Usage in Python

To load a processed signature for analysis, use:

from Statescope import Initialize_Statescope

# Initialize the Statescope model with the desired parameters
Statescope_model = Initialize_Statescope(
subset_bulk,
TumorType='NSCLC',
Ncelltypes=15,
Ncores=40
)